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a b s t r a c t

Indefinite kernel machines have attracted more and more interests in machine learning due to their better
empirical classification performance than the common positive definite kernel machines in many applications.
A key to implement effective kernel machine is how to use prior knowledge as sufficiently as possible to guide
the appropriate construction of the kernels. However, most of existing indefinite kernel machines actually
utilize the knowledge involved in data such as discriminative and structural information insufficiently and thus
construct the indefinite kernels empirically. Discriminatively regularized least-squares classification (DRLSC) is
a recently-proposed supervised classification method which provides a new discriminality-driven regularizer
to encourage the discriminality of the classifier rather than the common smoothness. In this paper, we
rigorously validate that the discriminative regularizer actually coincides with the definition on the inner
product in Reproducing Kernel Kreǐn Space (RKKS) naturally. As a result, we further present a new
discriminality-driven regularization framework for indefinite kernel machine based on the discriminative
regularizer. According to the framework, we firstly reintroduce the original DRLSC from the viewpoint of the
proper indefinite kernelization rather than the empirical kernel mapping. Then a novel semi-supervised
algorithm is proposed in terms of different definition on the regularizer. The experiments on both toy and real-
world datasets demonstrate the superiority of the two algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, kernel machines (classifiers) have been
widely developed in machine learning with the successful appli-
cations of the most famous being support vector machine (SVM)
for classification tasks [1]. Different from many traditional meth-
ods that require original vectorial representations of the data,
these methods embed the data into a high-dimensional (possibly
infinite-dimensional) feature space and then choose a problem
specific kernel function instead of the inner products on all pairs of
the embeddings, called as kernel trick [1,2]. Following the statis-
tical learning theory, the usual kernel functions are required to be
(conditionally) positive definite (PD) satisfied the Mercer0s condi-
tions, in order to ensure the existence of a Reproducing Kernel
Hilbert Space (RKHS) [3] and further lead to convex formulations
for the optimization problems in most kernel machines. Conse-
quently, the corresponding global optimal solutions exist [2].

In practice, however, the requirement of a kernel function to be
PD turns out to be a very strict assumption [1]. In many situations,
standard PD kernels are not applicable [1,4], such as suboptimal

optimization procedures for measure derivation [5], partial projec-
tions or occlusions [6], and context-dependent alignments or
object comparisons [7]. Furthermore, in other situations, standard
kernels can be applied, but non-PD kernels, that is, indefinite
kernels, frequently emerge when additional problem specific
prior knowledge needs to be incorporated in order to improve
the performance of the method [1], e.g., when invariance or
robustness is incorporated into the construction of the functions
[4,8].

In recent years, indefinite kernel machines have attracted more
and more research interests due to their empirically better
classification performance than the common PD kernel machines
[9–14]. However, with loss of the PD-ness of the kernels, the
corresponding optimization problems are more likely not convex
any longer which leads to difficulty in optimization. Most of the
methods that have been developed for solving such problem can
fall into one of three basic categories: spectrum transformation, PD
kernel proxy, and indefinite kernel extension.

Spectrum transformation methods generate a PD kernel matrix
by transforming the spectrum of the indefinite kernel matrix [2].
Pękalska et al. [8] set the negative eigenvalues to be zeros. Gaepel
et al. [15] flipped the sign of the negative eigenvalues. Roth et al.
[16] shifted the eigenvalues by a positive constant.
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PD kernel proxy methods consider the indefinite kernel matrix
as the noisy observation of some unknown positive semi-
definite one [2]. As a result, the optimization of the indefinite
kernel machines boils down to the learning of the kernel
matrix, which learns the proxy PD kernels to approximate the
indefinite kernels [9]. Luss and d0Aspremont [9] proposed a
regularized SVM formulation to learn the support vectors as
well as the proxy kernel simultaneously. They quadratically
smoothed the non-differentiable objective function and then
obtained two algorithms including the projected gradient
method and the analytic center cutting plan method [2]. Chen
and Ye [2] further reformulated the objective function as a
semi-infinite quadratically constrained linear program, which
can be solved by an iterative algorithm and converge to a global
optimum solution. Ying et al. [17] validated that the objective
function is continuously differentiable and its gradient is
Lipschitz continuous. They developed Nesterov0s smooth opti-
mization approach for indefinite SVM which achieves an
optimal convergence rate.
Indefinite kernel extension methods use the indefinite kernel
matrix directly and extend the existing PD kernel machines. Lin
and Lin [18] proposed an SMO-type method to find stationary
points for the non-convex dual formulation of SVM with a non-
PD sigmoid kernel. Haasdonk [1] gave a geometric interpreta-
tion of indefinite SVM and then executed the corresponding
optimization by minimizing the distances between convex
hulls in pseudo-Euclidean spaces. Ong et al. [19] extended the
common inner product in the RKHS to the Reproducing Kernel
Kreǐn Space (RKKS), so as to the product can be negative
associated with the indefinite kernel. They also presented a
generalized Representer Theorem for constrained stabilization
and proved a generalization bound by computing the Radema-
cher averages of the indefinite kernel class [19].

All of these methods have shown impressive improvements for
the learning algorithms of indefinite kernel machines. However,
one difficulty with these algorithms is the construction of the
kernels when facing usual classification tasks, especially in the
indefinite kernel extension methods. Haasdonk [1] has pointed out
that the key in the kernel machines is how to introduce some
available problem specific prior knowledge into the kernel func-
tions. In the usual classification, there is no prior knowledge about
the problem specific similarity measure generally. Consequently,
the knowledge involved in the data themselves becomes vital,
such as discriminative and structural information. However, most
of the existing indefinite kernel machines utilize such information
insufficiently and select the indefinite kernels empirically. If the
kernels are not appropriate, the performance of the algorithms
even becomes poor.

Discriminatively regularized least-squares classification (DRLSC)
[20] is a recently-proposed supervised classifier, which presents
that relatively speaking, the discriminality of the classifier is more
important than the usual smoothness. It defines a novel discrimina-
tive regularizer instead of the usual smoothness regularizer, which
can be formulated as the difference of the intra-class compactness
and inter-class separability metrics. However, the original DRLSC is
artificially restricted to the RKHS, which leads such indefinite
discriminative regularizer to violating the PD requirement of a
regularizer in the RKHS. Furthermore, the solution of DRLSC does
not satisfy the Representer Theorem in the RKHS any longer. Conse-
quently, for its nonlinear version, DRLSC has to use the empirical
kernel mapping to explicitly map the samples into the empirical
feature space [21].

Though DRLSC empirically performs better than many state-
of-the-art regularization methods [20], such as regularization
networks [22], radial basis function neural network (RBFNN)

[22], SVM, least squares support vector machines [23] and mani-
fold regularization [24], its theoretical foundation is still blank. In
this paper, we will establish the foundation based on the indefinite
kernel theory and further propose a discriminality-driven regular-
ization framework for indefinite kernel machine. The main con-
tributions of this paper include.

� We rigorously validate that the discriminative regularizer can
actually be reformulated as an inner product in the RKKS,
which testifies that the regularizer is a legal generalized
regularizer according to the formulation of the larger RKKS
(than RKHS) and thus the solution of DRLSC satisfies the
generalized Representer Theorem in the RKKS.

� Based on the regularizer, we propose the discriminality-driven
regularization framework for indefinite kernel machine which
provides a feasible strategy to embed the prior knowledge into
the construction of the indefinite kernel.

� Under the framework, we redesign the original DRLSC to
present a new supervised indefinite kernel machine by using
the proper indefinite kernelization instead of the non-intrinsic
empirical kernel mapping. The algorithm is named as super-
vised discriminatively regularized least-squares classifier
(SupDR), whose performance will be shown much better than
DRLSC in the experiment section.

� We further derive a novel semi-supervised indefinite kernel
machine by using different definition on the discriminative
regularizer according to the semi-supervised learning (SSL)
[25,26] scenarios, termed as semi-supervised discriminatively
regularized least-squares classifier (SemiDR). To the best of our
knowledge, SemiDR is more likely the first attempt to introduce
the indefinite kernel theory into the semi-supervised classifica-
tion, which embeds the local discriminative structure of the
labeled data and the global structure of the unlabeled data
simultaneously to limit the complexity of our learner. Systema-
tic experiments demonstrate the effectiveness of SemiDR in
real-world applications.

The rest of the paper is organized as follows. Section 2 briefly
reviews the algorithm of DRLSC. The discriminality-driven regu-
larization framework and the resulting SupDR are derived in
Section 3. Section 4 presents the proposed SemiDR. In Section 5,
the experimental analysis is given. Some conclusions are drawn in
Section 6.

2. Discriminatively regularized least-squares classification
(DRLSC)

DRLSC [20] is a unified discriminative regularization framework
for supervised learning, which directly concentrates on the dis-
criminative structure of the data and embeds the underlying class
information in a discriminative regularizer

min
f AΚ

1
n

∑
n

i ¼ 1
ðyi� f ðxiÞÞ2þRdisregðf ; ηÞ

( )
ð1Þ

The discriminative regularizer Rdisreg(f,η) has a general defini-
tion

Rdisregðf ; ηÞ ¼ ηAðf Þ�ð1�ηÞBðf Þ; ð2Þ

where A(f) and B(f) are the metrics which measure the intra-class
compactness and inter-class separability of the outputs respec-
tively. η is the regularization parameter that regulates the relative
significance of the intra-class compactness versus the inter-class
separability, 0rηr1.
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The common definitions on A(f) and B(f) are the generalized
variances in statistics [20]. That is,

Aðf Þ ¼ Sw ¼ ∑
c

t ¼ 1
∑
nt

i ¼ 1
‖f ðxðtÞi Þ� 1

nt
∑
nt

j ¼ 1
f ðxðtÞj Þ‖2; ð3Þ

where nt is the number of the samples xðtÞi belonging to class t,
t ¼ 1;⋯; c.

Bðf Þ ¼ Sb ¼ ∑
c

t ¼ 1
nt‖

1
nt

∑
nt

i ¼ 1
f ðxðtÞi Þ�1

n
∑
n

j ¼ 1
f ðxjÞ‖2 ð4Þ

For the moment, we focus on the linear classifier, i.e.,

f ðxÞ ¼wTx:

Then A(f) and B(f) can be further formulated as

Aðf Þ ¼ ∑
c

t ¼ 1
∑
nt

i ¼ 1
‖wTxðtÞi � 1

nt
∑
nt

j ¼ 1
wTxðtÞj ‖2

¼ ∑
c

t ¼ 1
∑
nt

i ¼ 1
wT ðxðtÞi �xðtÞÞðxðtÞi �xðtÞÞTw¼wTSww; ð5Þ

Bðf Þ ¼ ∑
c

t ¼ 1
nt‖

1
nt

∑
nt

i ¼ 1
wTxðtÞi �1

n
∑
n

j ¼ 1
wTxj‖2

¼wT ∑
c

t ¼ 1
ntðxðtÞ �xÞðxðtÞ �xÞTw¼wTSbw; ð6Þ

where xðtÞ denotes the mean of the samples in class t, and x is the
mean of all samples.

Obviously, Sw and Sb are equivalent to the within-class and
between-class scatter matrices in Fisher discriminant analysis
(FDA) [27]. Actually, the definitions on A(f) and B(f) are various.
For example, any improvements for FDA can be straightforwardly
combined in the regularizer to update Sw and Sb.

DRLSC further embeds the local discriminative structure of the
data into the regularizer, inspired by some FDA-based supervised
manifold dimensionality reduction methods [28]. Concretely, for
each sample xi, DRLSC firstly divides the nearest k neighborhood
ne(xi) into two non-overlapping subsets

newðxiÞ ¼ xðjÞi if xðjÞi and xi belong to same class; 1r jrk
n o

;

nebðxiÞ ¼ xðjÞi if xðjÞi and xi belong to dif f erent classes; 1r jrk
n o

:

Then DRLSC defines the intra-class graph Gw and the inter-class
graph Gb respectively

Ww;ij ¼
1 if xjAnewðxiÞ or xiAnewðxjÞ
0 otherwise

�
;

Wb;ij ¼
1 if xjAnebðxiÞ or xiAnebðxjÞ
0 otherwise

�
:

Consequently, A(SUP)(f) can be redefined to capture the intra-
class compactness from the intra-class graph Gw

AðSUPÞðf Þ ¼ SðSUPÞw ¼ 1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Ww;ij J f ðxiÞ� f ðxjÞJ2: ð7Þ

Likewise, B(SUP)(f) characterizes the inter-class separability from
the inter-class graph Gb

BðSUPÞðf Þ ¼ SðSUPÞb ¼ 1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Wb;ij J f ðxiÞ� f ðxjÞJ2: ð8Þ

In terms of the linear classifier, A(SUP)(f) and B(SUP)(f) can be
further deduced to

AðSUPÞðf Þ ¼ 1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Ww;ij½f ðxiÞ� f ðxjÞ�2

¼wTXðDw�WwÞXTw¼wTXLwXTw; ð9Þ

where Dw is a diagonal matrix and its entries Dw,ii¼ΣjWw,ij.
Lw¼Dw�Ww is the Laplacian matrix of Gw.

BðSUPÞðf Þ ¼ 1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Wb;ij½f ðxiÞ� f ðxjÞ�2

¼wTXðDb�WbÞXTw¼wTXLbX
Tw; ð10Þ

where Db is also a diagonal matrix and its entries Db,ii¼ΣjWb,ij.
Lb¼Db�Wb is the Laplacian matrix of Gb.

The final optimization function of DRLSC can be formulated as

min
f AΚ

1
n

∑
n

i ¼ 1
ðyi�wTxiÞ2þwTX½ηLw�ð1�ηÞLb�XTw

( )
: ð11Þ

Due to the indefinite property of the discriminative regularizer, the
solution of DRLSC does not satisfy the Representer Theorem in the
RKHS. As a result, DRLSC has to execute its kernelization by using the
explicitly empirical kernel mapping [21], whose dimension has been
fixed beforehand equally to the number of the training samples. The
kernelization is non-intrinsic and the desired performance of the
corresponding empirical kernel DRLSC is difficult to be guaranteed.

3. Discriminality-driven regularization framework for
indefinite kernel machine

Indefinite kernel theory is founded on the RKKS which is larger
than the traditional RKHS. The key difference between the RKKS and
RKHS is that the inner products are indefinite [19]. More formally,

Definition 1. (Kreĭn space) [19] An inner product space
ð ~Κ ; 〈d;d〉 ~Κ Þ is a Kreǐn space if there exist two Hilbert spaces Hþ ,
H� spanning ~Κ such that

(1) All f A ~Κ can be decomposed into f¼fþþf� , where fþAHþ
and f�AH�;

(2) 8 f ; gA ~Κ , 〈f ; g〉 ~Κ ¼ 〈f þ ; gþ 〉H þ � 〈f � ; g� 〉H � .

Furthermore, the solution to the problem of minimizing a regular-
ized risk functional in RKKS still admits a similar representation in
terms of an expansion over the training samples to RKHS.

Theorem 1. (Representer Theorem) [19] Let ~Κ be an RKKS with
kernel ~K . Denote by Vðf ;XÞ a continuous convex loss functional
depending on f A ~Κ only via its evaluations f(xi) with xiAX, let
Ω(〈f,f〉) be a continuous stabilizer with strictly monotonic Ω:R-R
and let Cff ;Xg be a continuous functional imposing a set of
constraints on f, that is C : ~Κ � X-R. Then if the optimization
problem

stabilize
f A ~Κ

Vðf ;XÞþΩð〈f ; f 〉 ~Κ Þ

s:t: Cff ;Xgrd;

has a saddle point fn, it admits the expansion

f n ¼ ∑
n

i ¼ 1
αi ~K ðxi;dÞ;

where xiAX and αiAR.

In this section, we will justify that the discriminative regular-
izer can be formulated as an inner product in the RKKS and
the corresponding optimization solution naturally satisfies the
generalized Representer Theorem. Consequently, the indefinite
kernel theory actually establishes the validity of the regularizer.
Furthermore, the regularizer also offers a feasible strategy to fuse
more prior knowledge into the indefinite kernel. In terms of the
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inter-complementarities between the indefinite kernel theory and
DRLSC, we further deduce a discriminality-driven regularization
framework for indefinite kernel machine.

3.1. Indefinite kernel analysis for discriminality-driven
regularization

Firstly, we present the indefinite kernel analysis for the discrimi-
native regularizer, and then give the common discriminality-driven
regularization framework which directly embeds classification spe-
cific prior knowledge into the construction of the kernel.

Proposition 1. The discriminative regularizer can be formulated as
an inner product in the RKKS, that is,

Rdisregðf ; ηÞ ¼ 〈f ; f 〉 ~Κ disreg
ð12Þ

where ~Κdisreg denotes the induced Kreǐn Space by the regularizer.

Proof. Recall that

Rdisregðf ; ηÞ ¼ ηAðf Þ�ð1�ηÞBðf Þ ¼wT ½ηSw�ð1�ηÞSb�w:

Decompose the joint matrix ηSw�ð1�ηÞSb into

ηSw�ð1�ηÞSb ¼ XLXT ð13Þ

Perform the eigenvalue decomposition for L

L¼UΛUT :

Then we have

ηSw�ð1�ηÞSb ¼ XUΛUTXT ð14Þ

So

Rdisregðf ; ηÞ ¼wTXUΛUTXTw¼ f TUΛUT f

¼ f T ∑
λi 40

λiuiuT
i þ ∑

λj o0
λjujuT

j

 !
f ð15Þ

Let Γ þ ¼U þΛþUT
þ ;Γ � ¼U �Λ�UT

� , obviously,

ΓT
þΓ � ¼U þΛþUT

þU �Λ�UT
� ¼ 0;

that is, Γþ and Γ� are orthogonal.
Decompose f¼fþþf� , where fþA Hilbert(Γþ), f�A Hilbert

(�Γ�), then

Rdisregðf ; ηÞ ¼ f T ½Γ þ �ð�Γ � Þ�f ¼ ðf þ þ f � ÞTΓ þ ðf þ þ f � Þ
�ðf þ þf � ÞT ð�Γ � Þðf þ þf � Þ

¼ f TþΓ þ f þ �f T� ð�Γ � Þf � : ð16Þ

Let

f TþΓ þ f þ ¼ 〈f þ ; f þ 〉H þ ; f
T
� ð�Γ � Þf � ¼ 〈f � ; f � 〉H � : ð17Þ

We can formulate the discriminative regularizer as

Rdisregðf ; ηÞ ¼ 〈f þ ; f þ 〉H þ � 〈f � ; f � 〉H � ¼ 〈f ; f 〉 ~Κ disreg
:

Consequently, the optimization problem in the discriminality-
driven regularization framework can be formulated as

min
f A ~Κ

1
n

∑
n

i ¼ 1
ðyi�f ðxiÞÞ2þ 〈f ; f 〉 ~Κ disreg

( )
ð18Þ

Proposition 2. The solution fn of the discriminality-driven regular-
ization framework admits an expansion

f n ¼ ∑
n

i ¼ 1
αn

i
~Kdisregðxi;dÞ ð19Þ

in terms of the indefinite kernel function in the RKKS, where the
coefficient

αn ¼ ðΚ̂þnIÞþY ð20Þ

αn ¼ ½αn

1;α
n

2;⋯; αn
n�T UΚ̂ is the n�n kernel matrix, K̂i;j ¼

~Kdisregðxi; xjÞ. Y is the label vector, Y ¼ ½y1; y2;⋯; yn�T .

Proof. In the optimization problem (18), we have

Vðf ;XÞ ¼ 1
n

∑
n

i ¼ 1
ðyi�f ðxiÞÞ2;

Ωð〈f ; f 〉 ~Κ disreg
Þ ¼ 〈f ; f 〉 ~Κ disreg

:

So, by the Representer Theorem 1, the solution fn of (18) has the
following form

f n ¼ ∑
n

i ¼ 1
αi ~Kdisregðxi;dÞ ¼ ∑

n

i ¼ 1
αi½K þ ðxi;dÞ�K � ðxi;dÞ�: ð21Þ

Substituting this form in (18), we arrive at the following
differentiable objective function of the coefficient α

arg min 1=nðY� Κ̂αÞT ðY� Κ̂αÞþαT Κ̂α ð22Þ

The derivative w.r.t to α of the objective function vanishes at the
minimizer

1=nð�Κ̂ÞðY� Κ̂αnÞþ Κ̂αn ¼ 0; ð23Þ
which leads to the following solution

αn ¼ ðΚ̂þnIÞþY :

From the two propositions, it can be obviously seen that the
discriminality-driven regularization framework naturally lies in
the RKKS induced from the discriminative regularizer Rdisreg(f,η)
itself. Different from many indefinite kernel machines that artifi-
cially use the direct indefinite kernels instead of the PD kernels,
the discriminality-driven regularization applies the PD kernels Kþ
and K� defined in the two RKHSs Hþ and H� respectively to
construct an indefinite kernel following the RKKS formulation.
Especially, classification specific prior knowledge involved in the
Sw and Sb in Rdisreg(f,η) is actually fused into the construction of the
kernels by the particular weighted inner products (17) in the Hþ
and H� . The corresponding kernelization is finally boiled down to
the general smoothing problem [19], which is quite simple and
mathematically tractable.

3.2. Supervised discriminatively regularized least-squares classifier
(SupDR)

Based on the framework, we anew characterize DRLSC by the
more proper indefinite kernelization than the original empirical
kernel mapping, and term the corresponding algorithm as SupDR.
Though its objective function is the same as DRLSC, SupDR actually
is a new kernel machine from the viewpoint of the different
kernelization.

Following the formulation (11) of DRLSC, SupDR firstly per-
forms the eigenvalue decomposition of ηLw�(1�η)Lb to form the
two RKHSs Hþ and H� , and then constructs the PD kernels Kþ and
K� in Hþ and H� respectively to form the indefinite kernel ~Kdisreg .
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Based on the generalized Representer Theorem 1, the solution of
SupDR can finally be obtained in terms of (19). The corresponding
pseudo-code for SupDR is shown in Table 1.

One issue in the kernelization is the construction of the PD
kernels Kþ and K� . For convenience, we select the kernel func-
tions to be linear kernel or Gaussian kernel in the following
experiments. Actually, any Mercer kernels, such as polynomial
kernel, exponential kernel, spline kernel, and their generating
kernels can all be used as their candidates, which more likely lead
to various combinations of the indefinite kernels. It can also
further be viewed as a preliminary attempt of the multiple kernel
learning [29] without the need of nonnegativity constraint for the
combined coefficients, which deserves our future study.

4. Semi-supervised discriminatively regularized least-squares
classifier (SemiDR)

In the semi-supervised classification scenarios, the labeled data
are generally few but the unlabeled data are abundant [30,31].
Compared to the supervised learning, the structural information
about the labeled and unlabeled data is more important for
classifier design in SSL. Moreover, the discriminative information
involved in the few labeled data is also vital to characterize the
data structure appropriately.

Belkin et al. [24] constructed a nearest neighbor graph to
characterize the nonlinear structure of data manifold, and then
presented the Laplacian regularized least-squares classification
(LapRLSC) through combining both the nonnegative Tikhonov
and Laplacian regularizers defined on the graph. However, the
unsupervised selection of the nearest neighbors in graph con-
struction may lead to the different class samples partitioned into a
same neighborhood, which violates the original manifold assump-
tion [32,33] to very great extent and thus would degrade the
corresponding classification performance. Wang and Zhang [34]
further stressed the discriminative information in the labeled data
and defined a nonnegative discriminative kernel regularizer
instead of the Laplacian regularizer in LapRLSC, called as semi-
supervised discriminative regularization (SSDR). But such discri-
minative kernel is in fact the inverse of the common Mercer
kernel, which is applied some perturbation to avoid singularity.
Wu and Schölkopf [35] proposed the local learning regularization

(LLReg) with the nonnegative local learning regularizer which
makes solution with the property that the label of each sample can
be well predicted based on its neighbors and their labels. Wang
et al. [36] extended this idea to the construction of the local loss
function and presented the local and global regularization (LGReg),
which firstly trains a linear classifier in each local neighborhood
and then embeds a new nonnegative regularizer into the frame-
work of LapRLSC instead of the Tikhonov regularizer. However,
since LLReg and LGReg both must train n classifiers corresponding
to the n samples given, their experimental costs are much
expensive especially in the large-scale classification. Moreover,
Wang et al. [37] proposed the semi-parametric semi-supervised
discriminant analysis (SSDA) through designating the loss function
as the projection function corresponding to the largest eigenvalue
obtained by kernel principal component analysis (KPCA) [38],
which can incorporate the geometrical information contained in
data into the learning process but still lacks the discriminative
power to some extent.

In this section, we try to further derive a novel semi-supervised
indefinite kernel machine termed as SemiDR from the proposed
framework, which aims to embed the local discriminative struc-
ture of the labeled data and the global structure of the unlabeled
data simultaneously. However, due to few labeled data in SSL, the
original definition on the discriminative regularizer cannot char-
acterize the discriminative structure of the data sufficiently and
effectively, at alone precisely, thus leading to the decline of the
classifier performance. Therefore, the primary issue in SemiDR is
how to redefine the regularizer to adapt the SSL scenarios
by making use of not only the labeled data but also the unlabeled
data. One possible option is the combination of the Laplacian
regularizer in LapRLSC with the discriminative regularizer in
SupDR. However, such combination still cannot effectively
avoid the insufficient description about the data discriminative
structure.

Fortunately, a recently-proposed dimensionality reduction
method semi-supervised local FDA (SELF) [39] enlightens us. SELF
bridges unsupervised PCA and supervised graph-based local FDA
(LFDA) [27], and gives the new definitions on the intra-class
and inter-class scatter matrices in SSL. Inspired by SELF, we will
redefine the discriminative regularizer.

Given a set of samples

X ¼ fx1;⋯; xl; xlþ1;⋯; xng � Rm;

where Xl ¼ fðxi; yiÞgli ¼ 1 are labeled coming from c different classes,
and Xu ¼ fxjgnj ¼ lþ1 are unlabeled. In terms of PCA, we firstly define
the similar total scatter measure which reflects the global struc-
ture of the outputs

Sp ¼ ∑
n

i ¼ 1
‖f ðxiÞ�

1
n

∑
n

j ¼ 1
f ðxjÞ‖2

¼ 1
2
wT ∑

n

i ¼ 1
∑
n

j ¼ 1
Φp

i;jðxi�xjÞðxi�xjÞTw¼wTSpw; ð24Þ

where Φp
i;j ¼ 1=n.

According to the pairwise expression of the scatter matrices
which is convenient to further integrate with the local manifold
geometry [27], we reformulate A(f) and B(f) of the generalized
variances as

Aðf Þ ¼ Sw ¼ ∑
c

t ¼ 1
∑
nt

i ¼ 1
‖f ðxðtÞi Þ� 1

nt
∑
nt

j ¼ 1
f ðxðtÞj Þ‖2

¼ 1
2
wT ∑

n

i ¼ 1
∑
n

j ¼ 1
Φw

i;jðxi�xjÞðxi�xjÞTw; ð25Þ

Bðf Þ ¼ Sb ¼ ∑
c

t ¼ 1
nt‖

1
nt

∑
nt

i ¼ 1
f ðxðtÞi Þ�1

n
∑
n

j ¼ 1
f ðxjÞ‖2

Table 1
Pseudo-code for SupDR.

Input: The samples fðxi ; yiÞgni ¼ 1;
The number k of the nearest neighbors of xi;
The regularization parameter η.

Output: The coefficient αn.
for i¼ 1;⋯;n

xðkÞi ’kth nearest neighbor of xi among fxjgnj ¼ 1;
end
for i¼ 1;⋯;n

for j¼ 1;⋯; k
if yi¼yj

Ww,ij’1;
else

Wb,ij’1;
end

end
end
Dw;ii ¼∑

j
Ww;ij; Db;ii ¼∑

j
Wb;ij; Lw ¼Dw�Ww; Lb ¼Db�Wb

UΛUT’ Eigenvalue decomposition of ηLw�(1�η)Lb;

Γ þ’U þΛþUT
þ ; Γ �’U �Λ�UT

�
Construct the kernel functions Kþ and K� in Hþ and H� respectively;
~K disreg’K þ �K � ; K̂i;j’ ~Kdisregðxi ; xjÞ; Y’½y1; y2 ;⋯; yn�T ;
αn ¼ ðΚ̂þnIÞþY :
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¼ 1
2
wT ∑

n

i ¼ 1
∑
n

j ¼ 1
Φb

i;jðxi�xjÞðxi�xjÞTw; ð26Þ

where

Φw
i;j ¼

1=nt if yi ¼ yj ¼ t

0 if yiayj

(
ð27Þ

Φb
i;j ¼

1=n�1=nt if yi ¼ yj ¼ t

1=n if yiayj

(
ð28Þ

For more detailed derivations, the interested readers can refer
to the literature of LFDA [27].

Similarly to LFDA, we further introduce the weight Ψi,j of the
data graph into the Φw

i;j and Φb
i;j as the coefficients, which describes

the local discriminative structure of the outputs

Slw ¼ 1
2
wT ∑

l

i ¼ 1
∑
l

j ¼ 1
Φlw

i;j ðxi�xjÞðxi�xjÞTw¼wTSlww; ð29Þ

Slb ¼
1
2
wT ∑

l

i ¼ 1
∑
l

j ¼ 1
Φlb

i;jðxi�xjÞðxi�xjÞTw¼wTSlbw; ð30Þ

where

Φlw
i;j ¼

Ψ i;j=lt if yi ¼ yj ¼ t

0 if yiayj

(
; ð31Þ

Φlb
i;j ¼

Ψ i;jð1=l�1=ltÞ if yi ¼ yj ¼ t

1=l if yiayj

(
; ð32Þ

Ψ i;j ¼
expð� Jxi�xj J2=s2Þ if xjAneðxiÞ or xiAneðxjÞ
0 otherwise

(
:

The Ψi,j weights the value for the output pairs in the same class
according to the relative location of the input pairs. While the
input pairs in the same class are close, Ψi,j imposes the corre-
sponding output pairs also being nearby. On the contrary, if the
inputs pairs in the same class are far apart, the corresponding
value of Ψi,j would be relatively smaller which tries to keep the
pairs away from each other in the output space. Furthermore, for
the input pairs in the different classes, there is no weight set since
they are expected to separate from each other in the output space
irrespective of the affinity in the original input space [27].

Finally, we obtain the new definitions on A(f) and B(f) in SSL by
bridging the measures characterized the global data structure and
local discriminative structure. Concretely, on one hand, the total
scatter matrix Sp is incorporated with Slb to form the new inter-
class scatter matrix SðSSLÞrlb . Since Slb would be unreliable in SSL in
the case of the few labeled data, the global structure is expected to
keep simultaneously [39]

BðSSLÞðf Þ ¼ ð1�γÞSlbþγSp ¼wT ½ð1�γÞSlbþγSp�w¼wTSðSSLÞrlb w; ð33Þ

where γ is the regularization parameter that regulates the relative
significance of the two kinds of the structural information,
0rγr1. Here we compute Sp by the both labeled and unlabeled
data as in SELF, thus it is more reliable and adding it in SðSSLÞrlb would
improve the reliability of B(SSL)(f).

On the other hand, an identity matrix I is incorporated with Slw
as a regularizer to form the new intra-class scatter matrix SðSSLÞrlw in
order to avoid the ill condition of Slw [39], which can improve the
stability of A(SSL)(f)

AðSSLÞðf Þ ¼ ð1�γÞSlwþγ JwJ2 ¼wT ½ð1�γÞSlwþγI�w¼wTSðSSLÞrlw w;

ð34Þ

The final optimization objective of SemiDR can be formulated as

min
f A ~Κ

1
l
∑
l

i ¼ 1
ðyi�wTxiÞ2þwT ½ηSðSSLÞrlw �ð1�ηÞSðSSLÞrlb �w

( )
: ð35Þ

For the nonlinear version, the procedure of SemiDR is similar to
SupDR. Besides the construction of the PD kernels Kþ and K� ,
another issue in SemiDR is the matrix decomposition for the joint
matrix

ηSðSSLÞrlw �ð1�ηÞSðSSLÞrlb ;

that is, the derivation of (13).
In fact, the pairwise expression of the scatter matrices can be

formulated as [27,39,40]

S ¼ 1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Wi;jðxi�xjÞðxi�xjÞT ; ð36Þ

where W is some n�n matrix, W¼[Wi,j]n�n.
Let D be the n�n diagonal matrix with Di;i ¼∑n

j ¼ 1Wi;j, and
L¼D�W. Then S can be expressed in terms of L as

S ¼ XLXT ð37Þ

Consequently, SðSSLÞrlw and SðSSLÞrlb can be reformulated as [39]

SðSSLÞrlw ¼ XLrlwX
T ¼ X½ð1�γÞLlwþγðXTXÞþ �XT ; ð38Þ

SðSSLÞrlb ¼ XLrlbX
T ¼ X½ð1�γÞLlbþγLp�XT ; ð39Þ

where Llw ¼Dlw�Φlw; Llb ¼Dlb�Φlb; Lp ¼Dp�Φp.
The corresponding eigenvalue decomposition is

η½ð1�γÞLlwþγðXTXÞþ ��ð1�ηÞ½ð1�γÞLlbþγLp� ¼UΛUT :

where U and Λ are defined as before. The pseudo-code for SemiDR
is shown in Table 2.

Table 2
Pseudo-code for SemiDR.

Input: Labeled samples fðxi ; yiÞgli ¼ 1;
Unlabeled samples fðxi ; yiÞgni ¼ lþ1;
The number k of the nearest neighbors of xi;

The width s in the weights Ψi,j;
The regularization parameters η and γ

Output: The coefficient αn.
for i¼ 1;⋯; l

xðkÞi ’ kth nearest neighbor of xi among fxjgnj ¼ 1;
end
for i; j¼ 1;⋯; l

if yi¼yj
Ψ i;j’expð� Jxi�xj J2=s2Þ; Φlw

i;j ’Ψ i;j=lyi ; Φ
lb
i;j’Ψ i;jð1=l�1=lyi Þ;

else
Φlw

i;j ’0; Φlb
i;j’1=l;

end
end
for i; j¼ 1;⋯;n

Φp
i;j’1=n;

end

Llw’Dlw�Φlw; Llb’Dlb�Φlb; Lp’Dp�Φp;
UΛUT’ Eigenvalue decomposition of

η½ð1�γÞLlwþγðXTXÞþ ��ð1�ηÞ½ð1�γÞLlbþγLp�;
Γ þ’U þΛþUT

þ ; Γ �’U �Λ�UT
� ;

Construct the kernel functions Kþ and K� in Hþ and H� respectively;
~Kdisreg’K þ �K � ; K̂ i;j’ ~Kdisregðxi ; xjÞ; Y’½y1 ;⋯; yl ;0;⋯;0�T ;
αn ¼ ðΚ̂þ lIÞþY :

H. Xue, S. Chen / Neurocomputing 133 (2014) 209–221214



5. Experiments

To evaluate the proposed SupDR and SemiDR algorithms, we
perform a series of experiments systematically on both toy and
real-world classification problems. All the experiments are per-
formed on a server with Xeon(R) X5460 3.16 GHz processor and
32766 MB RAM.

5.1. Toy datasets

Two-moon dataset is a commonly-used toy problem in the
comparisons of the classification algorithms. Here we choose
the two datasets that contain fifty samples in each class and set
the variances of the noise 1.5 and 0.5, corresponding to supervised
and semi-supervised classification respectively. As shown in
Figs. 1 and 2, ‘ � ’ denotes the training data in the two classes, as
well as ‘þ ’ denotes the testing data.

In the supervised dataset, we compare DRLSC, indefinite kernel
regularized least-squares classification (IKRLSC) and SupDR. We
select the Gaussian kernel as the kernel functions in DRLSC and
SupDR, and the indefinite Gaussian combination kernel [19] in
IKRLSC. The width parameter s is selected from the set {2�10,2�9,
…,29,210} as the option of the regularization parameter λ in
IKRLSC. The regularization parameters η and γ in DRLSC and SupDR
are chosen in the set {0,0.01,0.05,0.1,…,0.95,1}. All the choices are
done by cross-validation [41,42]. Furthermore, in DRLSC and
SupDR, the number k of the nearest neighbors is fixed to 7. The
three subfigures in Fig. 1 depict the discriminant planes of the
three algorithms on the dataset. The corresponding training and

testing accuracies are reported below the figures. The results show
that IKRLSC and SupDR both perform better than DRLSC on the
whole, due to the utilization of the indefinite kernel instead of the
unstable empirical kernel mapping. Moreover, the plane obtained
by SupDR is more consistent with the structural distribution of the
two class data than the plane of IKRLSC and thus gets better
classification results, since SupDR further embeds the prior dis-
criminative and structural information into the construction of the
indefinite kernel.

In the semi-supervised dataset, we randomly select three
samples in each class as the labeled data, illustrated as the filled
circle and hollow square symbols in Fig. 2. We compare regular-
ized least-squares classification (RLSC) [43], LapRLSC and SemiDR,
where RLSC is acted as a baseline and LapRLSC is the most
commonly-used compared algorithm in SSL. The kernel and
parameter settings are the same as the supervised case. The
classification results are shown in Fig. 2. RLSC only concerns the
six labeled data and thus performs poorly. LapRLSC introduces the
local structure of the data manifold into RLSC by the Laplacian
regularizer, and thus can describe the data distribution to some
extent. However, it is relatively sensitive to the local variations of
the data due to less emphasis on the global structure. SemiDR gets
more reasonable discriminant plane than both the planes of RLSC
and LapRLSC, and thus has the best classification accuracies.

5.2. IDA datasets

To further investigate the effectiveness of our SupDR
and SemiDR, we also evaluate their performance on the IDA

Fig. 1. The illustration of the discriminant planes in supervised classification: DRLSC (a) (Train Accu.¼82%, Test Accu.¼88%), IKRLSC (b) (Train Accu.¼92%, Test Accu.¼86%)
and SupDR (c) (Train Accu.¼98%, Test Accu.¼96%).

Fig. 2. The illustration of the discriminant planes in semi-supervised classification: RLSC (a) (Train Accu.¼100%, Test Accu.¼84%), LapRLSC (b) (Train Accu.¼100%, Test
Accu.¼94%) and SemiDR (c) (Train Accu.¼100%, Test Accu.¼98%).
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database [44].1 The database consists of thirteen datasets, which
all contain two classes. We use the training and testing sets offered
by the database. Table 3 presents a brief description of these
datasets.

5.2.1. Supervised classification
We compare SupDR with RBFNN, RLSC, IKRLSC, LapRLSC and

DRLSC, which all develop from the least squares loss function. We
also compare it with SVM, which is the state-of-the-art supervised
large margin classifier. All the algorithms are listed in Table 4.
The kernel and parameter settings are the same as the above toy
dataset, except that the number k of the nearest neighbors is
selected from {5,10,…,25,30}. The average classification accuracies
and standard deviations are reported in Table 5.

RBFNN in nature bases on the cluster assumption of the data
[45] which firstly divides the data into several clusters by some
clustering strategies. However, cluster assumption seems inapplic-
able for these datasets since RBFNN performs relatively worse than
the other algorithms even RLSC in most datasets. On the contrary,
LapRLSC, as a typical paradigm based on the manifold assumption
[45], performs much better. However, due to the insufficient
utilization of the discriminative information, the accuracies of
LapRLSC are also worse than the accuracies of DRLSC and SupDR in
several datasets.

IKRLSC and SupDR are both indefinite kernel classifiers, which
outperform RLSC and DRLSC respectively. Compared the two
algorithms, SupDR is superior to IKRLSC owing to the further
introduction of the prior knowledge into the indefinite kernels.

In order to find out whether SupDR is statistically better than
the other methods, we perform the t-test on the classification
results of the runs to calculate the statistical significance of SupDR.
The null hypothesis H0 demonstrates that there is no significant
difference between the mean number of patterns correctly classi-
fied by SupDR and the other methods. If the hypothesis H0 of each

dataset is rejected at the 5% significance level, i.e., the t-test value
is more than 1.7341, the corresponding results in Table 5 will be
denoted “n”. Consequently, as shown in Table 5, it can be clearly
found that SupDR possesses significantly superior classification
performance to the other methods in most datasets. This just
accords with our conclusions.

5.2.2. Semi-supervised classification
We compare SemiDR with RLSC and the PD kernel SSL

classifiers LapRLSC, LapSVM, SSDR, SSDA and LGReg, as shown in
Table 6. We randomly select 10%, 20%, 30%, 40% and 50% samples
in the training set as the labeled data in each dataset, and the
remaining samples as the unlabeled data. For LGReg is locally
linear [36], here we uniformly adopt the linear kernel. Different
from the supervised classification, the number k is selected from
{5,10,15,20}. Specially, for the datasets Breast-cancer, Heart, Thyr-
oid and Titanic which have relatively fewer training data, k is
selected from {5,10}. This process is repeated ten times to generate
ten independent runs for each dataset. Fig. 3 shows the corre-
sponding average classification accuracies and standard deviations
of the seven algorithms in the thirteen datasets. In order to avoid
the overlapping, each standard deviation is reported by compres-
sing to one-tenth.

On the most datasets, the accuracies of the seven algorithms
basically improve step by step with the increase of the labeled
data, which validates the well-known “No Free Lunch” Theorem
[38]. Comparing the seven algorithms, RLSC performs relatively
poorly on the most datasets, which clearly justifies the significance
of the unlabeled data in SSL. LapRLSC, LapSVM, SSDR, SSDA and
LGReg have comparable classification performance on the data-
sets, which may imply that these improved algorithms still utilize
the latent knowledge in the data insufficiently. Though these
algorithms have combined the discriminative information to some
extent in various manners, their classification performances are
worse than SemiDR0s on many datasets yet.

SemiDR outperforms all the compared algorithms on most
datasets, especially in Banana, Breast-cancer, Diabetis, German,
Titanic, Waveform and Image. Different from the other algorithms,
SemiDR embeds the local and global data structure involved in the
labeled and unlabeled data simultaneously and makes use of the
discriminative information more sufficiently, which results in its
superior performance in the real-world classification tasks.

5.3. SSL datasets

We further evaluate SemiDR on the SSL database,2 which are
the benchmark used in the literature [25] and consist of nine semi-
supervised learning datasets. The training and testing sets, as well
as the labeled and unlabeled data, also have been offered by the
database. We select seven datasets, and denote them by SSLi_j
(i¼1,2,…,7), where j is the number of labeled data. In these
datasets, SSL6 contains six classes and the other datasets have
two classes. Their dimension and total number of data are 241 and
1500 respectively, except 117 and 400 in SSL4.

We compare the algorithms both in the linear and Gaussian
kernel versions. In the Gaussian kernel version, we further compare
SemiDR under the same optimization objective function with two
different kernel tricks, i.e. the indefinite kernel and the empirical
kernel in the original DRLSC. We denote the latter as SemiDR_EK. The
choices of the parameters are the same as the ones above. The
classification results are reported in Tables 7 and 8.

SemiDR excels the other algorithms on almost all the datasets,
especially in the ten-labeled data cases. For example, on the

Table 3
The Attributes of the thirteen datasets in the IDA database.

Dataset Dimension Training set size Testing set size Run times

Banana 2 400 4900 100
Breast-cancer 9 200 77 100
Diabetis 8 468 300 100
Flare-solar 9 666 400 100
German 20 700 300 100
Heart 13 170 100 100
Ringnorm 20 400 7000 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100
Image 18 1300 1010 20
Splice 60 1000 2175 20

Table 4
Acronyms, full names and citations for the algorithms compared in the supervised
experiments.

Acronym Full name Citation

RBFNN Radial basis function neural network [22]
RLSC Regularized least-squares classification [43]
SVM Support vector machine [46]
IKRLSC Indefinite kernel regularized least-squares classification Ours
LapRLSC Laplacian regularized least-squares classification [24]
DRLSC Discriminatively regularized least-squares classification [20]

1 Available from http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. 2 Available from http://www.kyb.tuebingen.mpg.de/ssl-book/.
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SSL1_10 and SSL5_10 datasets, the accuracies of SemiDR exceed
those of the other algorithms near 10%. Specially, on the multi-
class dataset SSL6_10 and SSL6_100, SemiDR in the linear kernel
remarkably excels LapRLSC, SSDR, SSDA and LGReg, whose accura-
cies are even much poorer than those of RLSC. Furthermore,
comparing Table 7 with 8, the linear kernel SemiDR sometimes
indeed outperforms the Gaussian kernel version in the other
algorithms, such as on the SSL1_10, SSL5_10 and SSL7_10 datasets.

SemiDR also exceeds SemiDR_EK on all the datasets in the
Gaussian kernel. The superiority of SemiDR further validates the
reasonability of the indefinite kernels in practical applications.
Though the corresponding kernel matrix is not positive semi-
definite any longer as the common Mercer kernel in SemiDR_EK,
the utilization of the indefinite kernel can not only provide the
theoretical basis for SemiDR, but also actually improve its classi-
fication performance experimentally.

5.4. USPS dataset

We also compare these algorithms on a relatively large-
scale dataset USPS.3 USPS dataset consists of grayscale hand-
written digit images from “0” to “9”, and each digit contains

1100 examples. We divide the samples into two non-overlapping
training and testing sets, and each set contains half of examples in
each digit respectively. Furthermore, we randomly select 5%
samples in the training set as the labeled data. The average
classification accuracies are shown in Fig. 4.

Due to the similarity of multiple digits, the samples in different
classes overlap relatively heavily in the original space. In such
circumstance, LapRLSC, SSDR, SSDA and LGReg all fail in the linear
kernel case. However, SemiDR performs much better. Its accuracy
excels those of LapRLSC, SSDR and SSDA over 40%, and that of
LGReg over 30%. Through applying the Gaussian kernelization, the
accuracies of all algorithms greatly improve, but SemiDR still
performs best.

6. Conclusion

In this paper, we firstly build the theoretical basis for DRLSC by
justifying the legitimacy of the discriminative regularizer in the
RKKS. Then we further present a new discriminality-driven reg-
ularization framework for indefinite kernel machine based on the
regularizer, to remedy the insufficient use of classification specific
prior knowledge in the construction of the indefinite kernels.
Derived from the framework, two indefinite kernel machines
SupDR and SemiDR are proposed, where SupDR is the redescrip-
tion on the original DRLSC by the indefinite kernelization and
SemiDR is more likely the first discriminality-driven indefinite
kernel method for SSL. The experimental results have demon-
strated the superiority of the two methods.

There are several directions for future study:

� Theoretical generalization analysis: Due to the particularity of
the indefinite kernel, many state-of-the-art theoretical general-
ization results for common PD kernel are not applicable.
As a result, our framework for indefinite kernel machine
mainly focuses on the algorithmic design and solution. The

Table 5
Classification accuracies (%) comparisons on the IDA datasets with the Gaussian Kernel.

Dataset Classification Accuracy

RBFNN RLSC SVM IKRLSC LapRLSC DRLSC SupDR

Banana 89.24n 89.25n 89.49n 89.69n 89.31n 89.61n 91.42
71.07 70.52 70.49 70.51 70.69 70.62 70.59

Breast-cancer 72.36n 75.62n 75.84n 78.05n 77.31n 77.66n 80.64
74.11 73.21 74.02 73.12 72.46 72.27 72.70

Diabetis 75.71n 76.27n 77.33n 77.33n 76.33n 77.97 78.73
71.54 71.39 71.66 71.43 71.56 71.62 71.41

Flare-solar 65.63n 67.83n 68.10n 68.80n 69.46 68.00n 69.24
71.28 72.12 71.50 71.55 71.07 71.64 71.52

German 75.29n 76.57n 78.47n 78.33n 78.83n 78.04n 79.80
71.81 71.56 71.37 72.04 72.26 72.15 72.04

Heart 82.45n 83.70n 84.60n 85.00n 84.20n 85.20n 86.30
74.24 73.89 73.06 72.87 73.88 73.12 72.21

Ringnorm 98.30 95.41n 97.55 96.64n 98.96n 97.59 97.62
70.34 70.23 70.13 70.07 70.17 70.14 70.09

Thyroid 95.48n 94.73n 94.87n 95.60n 95.80n 95.95n 96.53
72.63 72.56 71.69 71.38 72.96 71.93 72.28

Titanic 76.74n 77.90n 78.86 78.47 78.58 78.76 78.88
71.43 71.79 71.16 71.33 71.57 71.02 71.15

Twonorm 97.15n 97.67n 97.74n 98.25n 98.61 97.86n 98.39
70.09 70.08 70.12 70.22 70.26 70.16 70.13

Waveform 89.34n 90.31n 90.35n 90.68n 90.48n 90.52n 91.60
70.38 70.42 70.36 70.26 70.59 70.32 70.27

Image 96.68 95.58n 96.60n 96.75 96.52 96.96 97.36
70.87 70.23 70.41 70.38 70.70 70.54 70.63

Splice 90.05 89.11n 89.46n 89.34n 91.16 90.23 90.64
70.72 70.43 70.68 70.56 71.22 70.82 70.76

Table 6
Acronyms, full names and citations for the algorithms compared in the semi-
supervised experiments.

Acronym Full name Citation

RLSC Regularized Least-Squares Classification [43]
LapRLSC Laplacian regularized least-squares classification [24]
LapSVM Laplacian support vector machine [24]
SSDR Semi-supervised discriminative regularization [34]
SSDA Semi-parametric semi-supervised discriminant analysis [37]
LGReg Local and global regularization [36]

3 Available from http://www.cs.nyu.edu/�roweis/data.html.
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Fig. 3. The classification performance comparisons of RLSC, LapRLSC, LapSVM, SSDR, SSDA, LGReg and SemiDR on the IDA datasets. (a) banana, (b) breast-cancer, (c) diabetis,
(d) flare-solar, (e) german, (f) heart, (g) ringnorm, (h) thyroid, (i) titanic, (j) twonorm, (k) waveform, (l) image and (m) splice.
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corresponding generalization analysis needs more systematic
research.

� Optimization on the discriminative regularizer: The design
way of the discriminative regularizer actually provides us a

feasible and convenient way to incorporate the classification
methods with the dimensionality reduction methods. Take
SemiDR as an example. In its implementation in our paper,
we just present a simple definition on the discriminative

Table 7
Classification accuracies (%) comparisons on the SSL datasets with the Linear Kernel.

Dataset Classification Accuracy

RLSC LapRLSC SSDR SSDA LGReg SemiDR

SSL1_10 74.24n 77.78n 77.70n 77.57n 68.53n 86.91
76.28 76.26 76.31 76.32 76.58 73.65

SSL2_10 75.22n 82.48 81.89n 81.12n 80.27n 82.98
71.17 71.75 71.30 71.13 71.53 71.41

SSL3_10 55.13n 60.79n 60.09 58.90n 56.87n 59.74
74.51 73.56 73.68 73.76 74.28 73.47

SSL4_10 55.08n 62.88 61.83n 55.33n 62.54n 63.71
73.13 72.93 73.55 74.35 72.46 71.80

SSL5_10 56.52n 61.62n 61.64n 51.43n 55.13n 72.88
72.88 72.82 72.86 71.63 71.41 71.68

SSL6_10 33.00n 19.48n 17.92n 17.90n 17.78n 33.93
74.42 74.02 74.27 73.10 74.31 73.83

SSL7_10 58.79n 60.82n 60.72n 60.97n 62.32n 68.29
74.69 74.11 74.30 73.93 74.53 73.75

SSL1_100 90.43n 93.20 92.80n 92.51n 84.02n 93.72
71.42 71.46 71.40 71.46 71.56 71.32

SSL2_100 86.12n 88.64 88.41 88.17 87.40n 88.19
71.28 71.30 71.25 71.28 71.34 71.21

SSL3_100 69.96n 85.87n 84.21n 83.04n 85.12n 87.84
72.24 72.54 72.38 71.69 72.32 71.53

SSL4_100 73.71n 76.33n 76.58 74.04n 76.57 77.50
72.86 72.63 72.94 73.14 73.28 72.29

SSL5_100 70.83n 78.08n 78.13n 57.09n 77.24n 79.53
71.20 71.28 71.25 72.00 71.87 71.56

SSL6_100 63.96 19.11n 17.51n 19.76n 18.71n 64.67
72.91 72.36 72.72 73.95 73.27 72.93

SSL7_100 70.64n 76.06 76.26 76.89 76.95 76.40
72.25 72.19 72.20 71.51 72.45 71.86

Table 8
Classification accuracies (%) comparisons on the SSL datasets with the Gaussian Kernel.

Dataset Classification Accuracy

RLSC LapRLSC SSDR SSDA SemiDR_EK SemiDR

SSL1_10 78.34n 79.28n 80.21n 78.48n 81.53n 87.91
75.95 77.94 76.93 76.74 74.93 73.72

SSL2_10 82.03n 83.18 82.93n 81.73n 80.03n 83.91
72.21 71.89 72.04 71.44 71.03 70.89

SSL3_10 63.83n 67.11n 67.80n 69.84n 63.03n 72.67
73.26 74.29 74.82 75.60 73.74 72.80

SSL4_10 61.42n 57.42n 62.92n 56.46n 56.25n 72.00
73.15 73.04 72.96 72.59 71.54 72.14

SSL5_10 59.39n 58.93n 62.94n 55.40n 59.70n 73.78
72.70 74.13 73.79 74.23 72.41 72.21

SSL6_10 35.71n 41.47 37.42n 35.80n 39.64n 41.73
73.85 74.16 72.59 73.65 72.63 72.86

SSL7_10 61.24n 60.53n 63.58n 57.44n 61.01n 72.84
73.14 74.25 74.13 74.46 72.69 72.37

SSL1_100 94.60n 95.56 95.27 94.98 93.98n 95.80
70.42 70.77 70.93 71.36 71.52 70.65

SSL2_100 90.95n 92.87 92.28n 91.70n 90.18n 93.22
71.33 71.41 71.67 71.36 71.58 71.56

SSL3_100 80.14n 88.23n 87.33n 82.89n 88.47n 90.67
71.23 71.54 71.17 70.87 71.27 70.97

SSL4_100 76.00n 78.10 79.80n 72.71n 76.42n 78.42
72.20 72.92 72.89 72.35 72.64 72.18

SSL5_100 75.11n 79.91n 80.12n 77.44n 80.14n 81.80
73.04 72.45 72.03 71.83 71.14 71.36

SSL6_100 78.44 78.53 79.33 78.34 77.35n 79.40
72.49 72.27 72.20 72.50 71.85 71.65

SSL7_100 74.54n 78.09n 79.27n 76.38n 72.50n 80.73
72.46 72.04 72.24 72.21 71.59 71.28
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regularizer referred to SELF by Sugiyama et al. [39]. Actually,
the definition diversity of such regularizer can motivate some
further work. For example, we can optimize the regularizer by
optimizing the graphs in it to replace the original artificial pre-
definition in SELF, doing so can desire to mitigate the difficulty
in the selection of parameters (k and s) through cross-valida-
tion, where k is the number of the nearest neighbors and s is
the width of the weight. In addition, we can also further
introduce the adaptive procedure of the graph construction
[47] into the definition of the regularizer to reflect the geome-
try of the data more faithfully. Certainly, other effective defini-
tions will be one of the directions for our future study.

� Optimization on the algorithmic solution: Although the sol-
ving approaches for SupDR and SemiDR are simple, their
computational complexity is relatively high especially in
large-scale problems. Actually, many algorithmic accelerating
techniques, such as Nyström approximation, column sampling
and matrix sparsity, can be easily combined with SupDR and
SemiDR. Hence how to develop effective and fast solutions for
our algorithms is another valuable topic for research.

� Indefinite kernel justification framework: We also provide a
feasible theoretical framework of justification for some
machine learning algorithms based on the indefinite kernel
theory. In fact, the algorithms are not limited to the classifica-
tion algorithms but can be generalized to dimensionality
reduction algorithms. For example, we can also kernelize
maximum margin criterion (MMC) [48] in the current new
way by the indefinite kernel, where its objective function is the
trace difference of the inter-class and intra-class scatter
matrices in FDA, and thus the corresponding kernel matrix
becomes also indefinite. Furthermore, we can more likely
generalize the framework to the algorithms based on the
Difference-of-Convex (functions) optimization [49] if the indi-
vidual convex functions involved can be kernelized.
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